勾股定理的历史,勾股定理的历史

文史通4年前历史故事资讯1168

勾股定理的历史

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。

古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

扩展资料:

勾股定理的历史意义

勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

参考资料来源:百度百科-勾股定理

勾股定理起源?

公元前11世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

到公元3世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中也证明了勾股定理。

西方最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。所以在西方,勾股定理称为“毕达哥拉斯定理”。

关于勾股定理的名称,在我国,以前叫毕达哥拉斯定理,这是随西方数学传入时翻译的名称。20世纪50年代,学术界曾展开过关于这个定理命名的讨论,最后用“勾股定理”,得到教育界和学术界的普遍认同。

扩展资料

意义

1.勾股定理的证明是论证几何的发端;

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

参考资料:百度百科-勾股定理

"勾股定理"的发展简史

据考证,人类对这条定理的认识,少说也超过 4000 年!

中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。

在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。

勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等。

参考资料: http://baike.baidu.com/view/366.htm

勾股定理历史背景,中国古代与国际上的有关资料

在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

扩展资料

如今国际普遍认为最早证明该定理的人是古希腊的毕达哥拉斯。他是在公元前六世纪完成证明的。也因为这个原因,所以国际上称之为毕达哥拉斯定理。而中国历史上明确证明该定理的是公元三世纪三国时期吴国人赵爽。他用弦图证明了这一定理。

而我们在认清勾股根本就是不是人,更谈不上数学家。勾股以及弦,在古汉语里指的是直角三角形的三条边。直角三角形三条边中最短边为勾,最长的边叫弦,另一个边是股,等腰直角三角形则勾股相同。早在西周时期,一个叫商高的人就提出了勾三股四弦五。

所以这个定理又叫商高定理。按照《周髀算经》的说法,商高给出了证明勾股定理的思路。但是考证历史我们发现了一个可悲的事情:商高是后人假托的。换言之,西周是否有过商高都成立问题,所以就不能说这个定理最早是商高证明的。而且,根据大量旁证,推算该书成书大约在公元前100年。

更关键的是,书里没有给出明确的证明,而是提了一个大概的思路。这就导致这一定理的证明不能算到商高头上了。数学史上提出思路但没有给出严格证明的案例太多了,其中不乏许多思路是错的案例。

参考资料来源:百度百科-勾股定理

勾股定理历史小论文

在初二上半学期,我们学习了“勾股定理”,也第一次接触到了初等几何。“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“数形结合”、“数形统一”的思想方法,启迪和促进了我国乃至世界的数学发展。勾股定理是几何中最著名的定理之一,它在数学研究与人类实践的活动中有着极其广泛的应用,可见掌握这一区域性的知识的重要性。

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有 500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理是历史上证发最多的定理之一,也是数学中最重要的结论之一。作为勾股定理的初学者,能够接触到如此的数学文明很幸福,要真正的掌握虽然不简单,但是我们一定要努力扎实的学好它。

勾股定理背景,历史和证明方法(多多益善)

商高定理

商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理.

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

毕达哥拉斯定理

Pythagoras’ theorem

在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。因此又称此定理为“毕达哥拉斯定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多。

赵爽与勾股定理

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

应用就是求题,直角三角形知道2长边求第3边长

一、达纲要求:

1、理解余角的概念,掌握同角或等角相等,直角三角形两锐角互余等性质,会用它们进行有关论证和计算。

2、了解逆命题和逆命定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题。

3、掌握勾股定理,会用勾股定理由直角三角形两边长求第三边长;会用勾股定理的逆定理判定直角三角形。

4、初步掌握根据题设和有关定义、公理、定理进行推理论证。

5、通过介绍我国古代数学关于勾股定理的研究,对学生进行爱国主义教育。

二、重点提示

1、重点 勾股定理及其应用

2、难点 勾股定理及其逆定理的证明

3、关键点 灵活运用勾股定理及其逆定理进行证题和计算

三、方法技巧

1、勾股定理是直角三角形三边存在的一种特殊关系,它的证明方法很多,用面积法证明比较简捷,用面积法证题是一种重要的证题方法,涉及到距离或垂线段时运用面积法解题较方便。

2、勾股定理的应用非常广泛,在进行几何计算时,常常要用到代数知识的方法,有的几何题为了应用勾股定理,可以作高(或垂线段)构造直角三角形。

3、勾股定理的逆定理的证明方法比较特殊,这种证题思路和方法值得学习借鉴,勾股定理的逆定理是判定是否直角三角形的重要依据,它可以通过边的长度关系,确定角的大小,因而在应用时,有一定的技巧,解题的思路有时更为特殊。

四、典型考题示范

例1.若ΔABC的三外角的度数之比为3:4:5,最长边AB与最小边BC的关系是______。

分析:因为三角形三个外角与三内角互补,三角形的内角和为180°,所以三外角的和为360°,这样三个外角的度数分别为90°,120°,150°,因而三角形之内角的度数分别为90°,60°,30°,因而三角形是含30°角的直角三角形,应用直角三角形,应用直角三角形的性质可以找到最长边与最短边的关系。

解:设三角形的三个外角分别为3α,4α,5α,则有3α+4α+5α=360°,

∴α=30°3α=90° 4α=120° 5α=150°

故三角形三个角度数为∠C=180°-90°=90°,∠B=180°-120°=60°,∠A=180°-150°=30°,∴ΔABC为含30°的直角三角形。

∴AB=2BC(直角三角形中,30°角所对的直角边等于斜边的一半)

填 AB=2BC

评注:本题应用勾股定理可以找到三边的关系,若已知一条边的长,可以求其余两边长。

勾股定理的发展简史

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

勾股定理的发现有何历史意义

1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。

2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。

3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。

4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。